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This work aims at presenting an innovative method for tailoring the morphology of functionalized plasma
polymer films (PPF). The approach is based on the formation of a plasma polymer bilayer system in which the
two layers differ by their chemical composition and cross-linking degree. As a case study, propanethiol-based
plasma polymer films have been investigated. As revealed by a much higher S/C ratio than in the propanethiol
precursor (i.e. 0.83 vs 0.33), it has been demonstrated that the bottom layer contains a large fraction of trapped
sulfur-based molecules (e.g. H,S). When further covered by a denser PPF formed at higher energetic conditions,
a three-dimensional morphological reorganization takes place giving rise to the micro/nano structuration of the
organic material. The shape, the dimensions as well as the density of the generated structures are found to
depend on the thickness of both coatings involved in the bilayer structure, offering a great flexibility for surface
engineering. Annealing experiments unambiguously confirm the major role played by the sulfur-based trapped
molecules for inducing the reshaping process. The whole set of data clearly paves the way for the development of

an innovative approach for finely tailoring the morphology of functionalized PPF at the micro/nano scale.

1. Introduction

Since 1980s, functionalized plasma polymer film (PPF) containing
chemical groups such as —NH, [1,2], —OH [3,4], —COOH [5,6] and
—SH [7,8] have been given a considerable attention. Particularly, by
taking benefit of the selective reactivity of the organic groups, such
functional surface represents an adequate platform for specifically an-
choring biomolecules (e.g. DNA, proteins) and cells [9-11], which is of
prime importance for the fabrication of biosensors or in disease diag-
nosis [12,13].

Briefly, the plasma polymerization method is based on the activa-
tion of an organic precursor dosed into the plasma resulting from the
formation of ions and neutral species (including radicals) and their
subsequent condensation on exposed surfaces allowing for the growth
of the solid film. The associated complex growth mechanism, which
includes a multitude of gas phases and surface reactions pathways is
responsible for the singular properties of PPF such as, for instance, the
absence of repeating units in comparison with conventional polymers,
their unique resistance to solvents and heat as well as their good ad-
hesion properties on almost all kind of substrates [14-17].

It has been extensively reported for several functionalized PPF
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families (i.e. oxygen, nitrogen and sulfur-based ones) that, under cer-
tain experimental synthesis conditions, low molecular weight-oligo-
mers and/or stable molecules, are embedded in the plasma polymer
matrix [7,9,18-21]. The presence of these trapped species is responsible
for prejudicial phenomena, especially in the context of biological ap-
plications requiring the immersion of the coatings in solution. For in-
stance, the embedded molecules could be released in solution, initiating
undesirable effects on the biological response of the material and thus
jeopardizing the intended application [20,22,23]. Therefore, numerous
efforts were made in the past to avoid the presence of trapped species in
the material by using suitable experimental conditions. This work aims
at showing that it is possible to take benefit from the presence of these
unbound molecules for inducing a controlled structural reorganization
of the material. The objective is to be able to modulate the micro/nano
architecture of functionalized PPF, which is nowadays still highly
challenging [24]. It is important to note that structuring at the micro/
nano scale the architecture of functionalized organic-based thin films
confers to the material unprecedented physico-chemical properties
appealing for several technological applications including the mod-
ulation of the biological response of a material [25], the fabrication of
super-hydrophobic coating [26] or highly sensitive biosensors [27], ....
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Scheme 1. Overall strategy developed in this work consisting, at first, in the
synthesis of a PPF containing trapped molecules followed by the formation of a
second denser PPF.
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Most of the approaches reported in the literature for the deposition of
structured plasma polymer surfaces are based on complex multistage
processes involving rough and/or structured substrates templates fab-
ricated by other techniques and/or post deposition processes [24,28].
Although the straightforward fabrication of structured fluorocarbon-
based PPF has also been studied [26], for other precursors, the for-
mation of morphological features has only been observed during the
initial growth stages and thus limited to ultra-thin films [29].

In this context, a simple and direct method within the premises of a
one-reactor approach for the deposition of nano/micro structured PPFs
without the need of a patterned substrate is presented in this work. As it
is schematically described in Scheme 1, this strategy is based on the
deposition of a bilayer system constituted by two PPF differing by their
chemical composition and cross-linking degree in order to control the
morphology of functionalized PPF. To illustrate the simplicity of the
proposed method in this work, the two depositions steps have been
carried out in the same reactor by using the same organic precursor.
The first step consisted in the synthesis of a propanethiol-based PPF
containing a significant amount of trapped species. The choice of the
propanethiol precursor was motivated by our previous works revealing
that a large fraction of sulfur-based molecules (e.g. H,S) can be em-
bedded in the polymeric network under certain experimental conditions
[7,18,19,30-32]. In the second step, a PPF acting as a barrier coating
(and therefore synthesized in higher energetic conditions) has been
deposited on the bottom layer. The idea behind this approach was to
activate the outward diffusion of the trapped molecules for inducing the
structural deformation of the material and giving rise to a nano/micro
structured PPF. In order to evaluate the control that our strategy pro-
vides on the morphological characteristics of PPF, the influence of the
thickness of both the bottom and the top layers has been investigated.
Additionally, several fundamental aspects regarding the reshaping
mechanism have also been addressed.

2. Experimental part

Propanethiol (Sigma Aldrich, 99% purity) has been plasma poly-
merized on 2 x 2 cm? Si wafers (110). Before their introduction into the
chamber, the substrates have been washed in isopropanol.

The depositions have been carried out in a metallic vacuum
chamber: 65 cm in length and 35 cm in diameter. The reactor has been
pumped down by a combination of turbomolecular and primary pumps
allowing to reach a residual pressure lower than 2 x 10~ *Pa. More
details about the deposition chamber can be found elsewhere [18,32].
For all the PPF syntheses, the working pressure, controlled by a throttle
valve connected to a capacitive gauge, has been fixed at 5.33 Pa. The
plasma has been generated by using a one-turn inductive water-cooled
copper coil (10 cm in diameter) located inside the chamber. The coil has
been connected to an Advanced Energy RF (13.56 MHz) power supply
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via a matching network. The precursor flow rate has been fixed for all
the experiments at 10 sccm. During the film depositions, the substrate
was at the floating potential.

The deposition of plasma polymer bilayer has been made in the
same reactor by switching two different plasma conditions without
extinguishing the discharge. For the formation of the bottom PPF, the
substrate temperature has been accurately regulated at 10 °C by com-
bining a liquid nitrogen cooling system with an ohmic heating circuit.
The power applied to the coil (Prg) and the distance between the sub-
strate and the plasma source have been fixed at 40 W and 10 cm, re-
spectively. For the synthesis of the second PPF, Prr has been increased
to 100 W whereas the distance between the coil and the substrate was
reduced to 2 cm. During that second step, the substrate temperature has
been no longer controlled and has reached 30-35 °C at the end of the
deposition. The influence of the thickness of the bottom PPF has been
investigated from 58 nm to 350nm (i.e. deposition time from 5 to
30 min) while the thickness of the top PPF in the range 53-320 nm (i.e.
deposition time from 30 s to 2 min).

XPS (X-Ray Photoelectron Spectroscopy) measurements have been
performed by using a PHI 5000 VersaProbe apparatus connected under
vacuum to the deposition chamber. A monochromatized Al Ka line
(1486.6 eV) has been used as the photon source. The atomic relative
concentration of each element has been calculated from peaks areas
taking into account the respective photoionization cross-sections, the
electron inelastic mean free path, and the transmission function of the
spectrometer.

Static time-of-flight secondary ion mass spectrometry (ToF-SIMS)
measurements have been acquired using a ToF-SIMS IV instrument
from IONTOF GmbH. A 10 keV Ar™ ion beam has been used at a current
of 0.75 pA rastered over a scan area of 300 X 300 um? for 125s. The
spectra have been acquired in positive mode.

Cross-section scanning electron microscopy (SEM) imaging has been
carried out on a FEG-SEM Hitachi SU8020 microscope operating at
3kV. Prior to their analysis, the samples have been metallized by a
5nm thick carbon-based coating and cleaved by using a diamond tip.

The AFM (Atomic Force Microscope) measurements have been
carried out in controlled environment ([O;] < 5ppm and
[H,0] < 1ppm), with a Bruker Multimode microscope equipped with
a Nanoscope VIII controller. The microscope was operated in inter-
mittent-contact mode, using commercially available silicon tips with a
resonance frequency of about 300 kHz and a typical radius of curvature
in the 5-10 nm range. The images are shown as recorded, except for a
planefitting processing. The analysis of the AFM images has been per-
formed by using “Nanoscope Analysis” software.

3. Results

Our research strategy has involved the formation of a bilayer system
composed by two propanethiol plasma polymer films (Pr-PPF) synthe-
sized in different experimental conditions. The choice of the experi-
mental window for the synthesis of the bottom layer (i.e. substrate
temperature fixed at 10 °C and Prr = 40 W) has been made according to
a previous work which has thoroughly investigated the influence of the
thermal conditions of the substrate on the chemical composition as well
as the cross-linking density of Pr-PPF [30]. It can be learned that
cooling down the substrate favors the trapping of sulfur-based mole-
cules (e.g. H,S) within the PPF matrix. Following the formation of the
bottom layer, a second Pr-PPF has been synthesized at higher energy
input (i.e. from 40 to 100 W) while decreasing the distance between the
substrate and the plasma source (i.e. from 10 to 2 cm). We are expecting
that such a change in the conditions will activate the outward migration
of the embedded molecules contained in the bottom layer; simulta-
neously, a denser upper PPF will form which is likely to lower the re-
lease of the diffusing species into the atmosphere.

Before examining the bilayer system in details, the chemical com-
position, the cross-linking degree and the morphology of both coatings
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Fig. 1. S/C ratio measured by XPS for (a) the bottom and (b) the top PPF deposited as a single layer on silicon substrate and the corresponding 2D AFM images (c, d).

deposited as a single layer on silicon substrates have been investigated
(Fig. 1). Regarding the chemical composition, the sulfur to carbon ratio
(S/C) measured by XPS strongly differs depending on the synthesis
conditions (Fig. 1a and b). For the low- energy-deposited PPF, the S/C
ratio is much higher than in the propanethiol precursor (i.e. 0.83 vs
0.33). As previously reported, this behavior is attributed to the presence
of unbound sulfur-based molecules (i.e. H,S) in the polymer network
[7,30-32]. On the other hand, the high- energy-deposited PPF shows a
lower S/C ratio (i.e. 0.58), revealing that in this case the proportion of
trapped species is significantly reduced. This trend can be explained by
the lower production of H,S species in the plasma, as reported by mass
spectrometry measurements limiting therefore the trapping scenario
[301.

To thoroughly characterize the physico-chemical properties of both
PPF, ToF-SIMS experiments have been carried out. This technique has
been proved to provide information about the cross-linking degree of
the layers [33,34]. Fig. 2 represents the ToF-SIMS spectra recorded for
the analysis of the two samples illustrating the high complexity of the
data as testified by the numerous recorded peaks. Regarding the cross-
linking degree, it has been reported that this parameter is inversely
correlated to the total secondary ions intensity [33,34]. In our experi-
mental window, a total secondary ion intensity of 38 965 * 3446
(arbitrary unit) has been found for the low energy conditions in com-
parison to 22 344 + 964 for the high-energy-deposited PPF. This un-
ambiguously indicates an increase in the cross-linking density of the
plasma polymer when shifting from the low to the high energy condi-
tions as expected from the literature [1,35].

With regard to their morphology, both PPF are essentially smooth
(average roughness of ~0.2 nm for both layers) as typically reported for
PPF (Fig. 1c and d) [29,36].

When the two PPF are synthesized in the same conditions but are
involved in a bilayer system, the resulting morphology strongly differs,
as shown in Figs. 3 and 4: a micro/nano structuration is clearly iden-
tified revealing that a morphological reorganization occurs. The size,
the shape as well as the density of the micro/nano objects are found to
depend on the thickness of both coatings involved in the layered
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Fig. 2. Typical ToF-SIMS spectra of PPF synthesized for the low and high en-
ergetic conditions.

structure (Figs. 3 and 4).

In Fig. 3, it can be shown that for a given thickness of the top layer
(i.e. t,=160nm), the diameter (i.e. from ~200 = 75nm to
3100 + 750 nm) as well as the height (i.e. from ~45 * 20nm to
800 + 200 nm) of the structures exhibiting a dome-like shape increase
with the thickness of the bottom PPF (t,). Concomitantly, the density of
the micro/nano objects is found to decrease when increasing tp.

With regard to the influence of the thickness of the top layer (for t;
fixed at 350 nm), the shape of the micro/nano objects is found to evolve
from a worm-like (with a length of ~2500 = 1100 nm, a width of
~1100 + 360nm and a height of ~240 = 70nm) to a dome-like
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Fig. 3. 2D AFM and the corresponding line scans images of a bilayer Pr-PPF varying the thickness of the bottom layer: (a) 58 nm, (b) 175nm and (c) 350 nm. The

thickness of the top layer is fixed at 160 nm.

(with a diameter of ~3100 = 750nm and a height of
~800 = 200nm) and then to crescent-like structure (with a length of
~2500 *+ 1100nm, a width of ~2000 = 900nm and a height of
~1450 300 nm) when increasing t, from 53 to 320 nm (Fig. 4). Also,
in this case, the density of the particles decreases when increasing the
thickness.

In order to evaluate if the deformation of the bottom layer takes
place over the whole thickness, cross-section SEM imaging has been
carried out (Fig. 5). It can be shown that the nano/micro objects stand
on a flat PPF presenting a thickness of about 200 nm.

=+
=+

390nm b

a

At this stage, a major advantage of our methodology can be pointed
out. Thanks to our strategy, nano/micro functionalized PPF can be
obtained with a large control over the dimension of the structures (i.e.
from the nano to the micrometer scale) by simply adjusting the thick-
ness of both thin films involved in the bilayer system. Based on our
experimental observations and considering the growth of PPF at a
molecular level, a scenario can be tentatively proposed, as schemati-
cally shown in Fig. 6. First of all, as previously mentioned, a large
density of unbound stable molecules (e.g. H,S) is trapped in the bottom
layer. At the initial stage of the growth of the second PPF, a higher level
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Fig. 4. 2D AFM and the corresponding line scans images of a bilayer Pr-PPF varying the thickness of the top layer: (a) 53 nm, (b) 160 nm and (c) 320 nm. The

thickness of the bottom layer is fixed at 350 nm.
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Fig. 5. Cross-section SEM images of a bilayer Pr-PPF
varying the thickness of the bottom layer (thickness
of the top layer fixed at 160nm): (a) 58 nm (b)
350 nm. Cross-section SEM images of a bilayer Pr-
PPF varying the thickness of the top layer (thickness
of the bottom layer fixed at 350 nm): (c) 53 nm (d)
320 nm. Scale bar: 1 pm.

R
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Fig. 6. Scenario explaining the reorganization of the bilayered PPF. See the text
for more details.

of energy is transferred to the already deposited bottom layer through
several surface processes including ion impact, photon irradiation and
exothermic radicals chemisorption reaction (Fig. 6a) [37]. Indeed, it
has been reported that the increase in the energy dissipated in the
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discharge and the reduced distance between the plasma source and the
substrate results in an increase in the ion flux and photon irradiation
toward the growing film [31,38,39]. On the other hand, the contribu-
tion of exothermic surface reactions is directly related to the kinetic of
deposition [31,37]. In our experimental window, the deposition rate
when switching from the low to higher energetic conditions has sig-
nificantly increased from ~15 nm/min to ~320 nm/min. Therefore, for
a given period of time, a higher number of exothermic condensation
reactions occur, contributing to increase the energy flux toward the
interface.

This energy load to the bottom PPF is likely to induce an increase in
the surface temperature thereby activating the outward diffusion of the
trapped H,S species present in the bottom layer. Meanwhile, the second
PPF is growing as a function of time. As this second PPF presents a more
cross-linked polymer network, this material could therefore act as a
barrier coating lowering the outward migration of the embedded mo-
lecules. The concomitant outward diffusion of molecules and the for-
mation of the denser upper PPF could result in the observed three-di-
mensional expansion of the material (Fig. 6b). Furthermore, according
to the Laplace law, the formation of a curved surface significantly in-
creases the internal pressure providing additional driving force for in-
ducing the deformation of the polymeric material [40]. At the final
stage, an organic-based micro/nano structured material constituted by
a deformed PPF containing embedded species covered by a second PPF
is formed (Fig. 6¢). From this mechanism, the influence of the thickness
of the bottom coating as observed experimentally can be understood as
follows: increasing the thickness results in an increase in the absolute
amount of the trapped species giving rise to a more pronounced tridi-
mensional deformation of the material. Consequently, the objects be-
come larger in size while their density decreases. Because of the top PPF
covers the plasma polymer particles, its thickness also directly affects
the height as well as the lateral dimension of the nano/micro objects.

In order to validate the proposed structuration mechanism, two
extra experiments have been carried out. The first one has consisted in
annealing the bottom layer during 1h in air at 200 °C before the de-
position of the denser PPF. As shown in Fig. 7, the formation of micro/
nano organized PPF hasn't occurred in that case. Interestingly, a drastic
decrease in the S/C ratio has been observed after annealing likely due to
the outward diffusion of the sulfur-based embedded species into the
atmosphere.

A similar thermal treatment has also been applied to a bilayered
structured PPF. As shown in Fig. 8 a and b, a dramatic decrease in the
height of the particles (i.e. by ~90%) has occurred whereas their dia-
meter remained almost unchanged. This behavior can be explained by
the activated migration in the atmosphere of the embedded species, as
confirmed by the large decrease in the S/C ratio after annealing
(Fig. 8¢).
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Fig. 7. (a) 2D AFM image of a bilayer Pr-PPF formed by a bottom coating (350 nm) previously annealed at 200 °C during 1 h prior the deposition of a top layer of
320 nm. (b) Evolution of the S/C ratio measured by XPS for the bottom Pr-PPF synthesized before and after annealing in air during 1 h at 200 °C.

The overall set of data regarding the influence of the annealing established. Our approach has consisted in the synthesis of a deform-
procedure therefore unambiguously confirms the key role of the em- able plasma polymer containing a large proportion of trapped species
bedded species in the bottom layer for activating the reshaping process. which, when further covered by an additional denser plasma polymer,

has undergone a morphological reorganization. The fundamental re-
shaping mechanism, as confirmed by several complementary experi-
mental results, involves the activation of the outward diffusion of the
trapped molecules during the growth of the top plasma polymer formed
at higher energy and acting as a barrier layer.

4. Conclusion

In this work, an innovative strategy aiming at controlling the micro/
nano architecture of sulfur-based plasma polymer films has been

a b
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Fig. 8. 2D AFM and the corresponding line scans images of a bilayer Pr-PPF formed by a bottom (350 nm) and top (320 nm) coatings (a) before and (b) after
annealing in the air at 200 °C during 1 h. (c¢) Evolution of the corresponding S/C ratio measured by XPS before and after annealing.
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The attractiveness of our method lies in the easiness to tailor the
shape (e.g. dome-like, worm-like, ...) and the dimensions (i.e. from
~50nm to ~3500 nm) of the plasma polymer pattern by modulating
the thickness of the coatings involved in the bilayer system. This high
flexibility paves the way for the fabrication of tailor-made organic-
based coatings with a tunable morphology appealing for numerous
applications, especially in the biotechnology field (e.g. for driving the
response of the material toward cells interaction). Furthermore, owing
to the good adhesion properties of plasma polymers, this strategy can in
principle be applied to almost all kind of substrates.

Finally, it has to be mentioned that the presence of embedded stable
molecules in plasma polymeric network has until now always been
considered as a serious problem. This work shows how to benefit of this
feature to control the morphology of plasma polymer films opening the
door to further developments in the field.
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